№ 2 (16) – 2021 

 

IMPROVING THE EFFICIENCY OF APPLICATIONUNCAVATED UNDERWATER DEVICES FOR THE NEEDS OF THE NAVAL FORCES OF THE ARMED FORCES OF UKRAINE

https://doi.org/10.37129/2313-7509.2021.16.126-134
 
 завантаження T. Akinina
                                                        
 завантаження V. Symonenkov
 
 завантаження I. Symonenkova
 
 завантаження G. Trushkov, Cand. of Technical Sciences
 

FULL TEXT: PDF (in Ukrainian)

 

Cite in tne List of bibliographic references (DSTU 8302:2015)

Акініна Т. Л., Симоненков В. М., Симоненкова І. В., Трушков Г. В. Підвищення ефективності застосування безекіпажних підводних апаратів для потреб Військово-Морських Сил Збройних Сил УкраїниЗбірник наукових праць Військової академії (м. Одеса). 2021. Вип. 2(16). С. 126-134. https://doi.org/10.37129/2313-7509.2021.16.126-134 

 

Abstract

The article considers the problems related to the need to use unmanned submarines for the needs of the Navy of the Armed Forces of Ukraine with the possibility of using the latest information technologies, namely, - study of acoustic means of monitoring physical processes in the marine environment, which are the most effective technologies , which significantly supplement and expand the possibilities of contact methods for measuring environmental indicators in technical solutions for underwater monitoring.
Methods of solving the tasks on the basis of optimal use of sonar underwater monitoring are proposed in order to increase the overall sensitivity of the sonar system to the useful signal and reduce the sensitivity to "natural" background or intentional interference by using small multi-beam sonar MEMS technology using.
Modular design of underwater robotic vehicles, which are one of the promising areas of development of naval equipment, based on the principle of open architecture involves the construction of their components as integral functional elements of the modular type. Therefore, there is a need to create cheap, easy to manufacture and install small hydroacoustic blocks-modules based on the use of MEMS technology, which reduces the overall cost and increases the survivability of the BPA as a whole.
It should be noted that the modular design of underwater robotic vehicles, which are one of the promising areas of development of naval equipment, based on the principle of open architecture involves the construction of their components (basic elements) as integral functional elements of the modular type.
It is proposed to use the obtained results in the course of further research within the framework of research and development on the creation of promising mobile unmanned aerial vehicles for underwater monitoring and surveillance.

Keywords

 
unmanned underwater vehicle, robotic search and observation technologies, marine situation, underwater situation, microelectromechanical systems.
 

List of bibliographic references

  1. Roy T. N. Deployable Autonomous Distributed System: Future Naval Capability in Undersea Warfare. SSC San Diego Biennial Review. Intelligence, Surveillance, and Reconnaissance. 2003. Vol. 3.
  2. Гібридна війна. URL: https://uk.wikipedia.org/wiki/Гібридна_війна (дата звернення: 01.10.2021).
  3. Красильников Р. В. Системы борьбы с необитаемыми аппаратами – асимметричный ответ на угрозы XXI века. С.-Петербург: МОН РФ Санкт-Петербургский государственный морской технический университет, 2013. 83 с.
  4.  Блинцов В. С. Привязные подводные системы. К.: Наукова думка, 1998. 232 с.
  5.  Илларионов Г. Ю., Сидоренко В. В., Смирнов С. В. Автономные необитаемые подводные аппараты для поиска и уничтожения мин. Зарубежное обозрение, №6. 2006 г. 93 с.
  6.  Урик Роберт Дж. Основы гидроакустики. Л.: Судостроение. 1978. 448 с.
  7.  Мікроелектромеханічні системи. URL: https://uk.wikipedia.org/wiki/Мікроелектромеханічні_системи(дата звернення: 01.10.2021).
  8.  Тополов В.Ю., Панич А.Е. Пьезокомпозиты: получение, свойства, применение (учебное пособие). Ростов на Дону, 2009. 51 с.
 

References

  1. Roy, T.N. (2003). Deployable Autonomous Distributed System: Future Naval Capability in Undersea Warfare. Intelligence, Surveillance, and Reconnaissance, 3[in English].
  2. Hybrid war. (n.d.). Retrieved from https://uk.wikipedia.org/wiki/Гібридна_війна (Last accessed: 01.10.2021) [in Ukrainian].
  3. Krasilnikov, R. V. (2013). Anti-vehicle systems are an asymmetric response to the threats of the 21st century. S.-Peterburg: MON RF Sankt-Peterburgskij gosudarstvennyj morskoj tekhnicheskij universitetPubl. [in Russian].
  4. Blinzhov, V. S.(1998). Tethered underwater systems. Kyiv: Naukova dumka Publ. [in Russian].
  5. Illarionov, G. YU., Sidorenko, V. V. & Smirnov, S. V. (2006). Autonomous unmanned underwater vehicles for searching and destroying mines. Zarubezhnoe obozrenie, 6 [in Russian].
  6. Urik Robert Dzh. (1978). Basics of hydroacoustics. L.: Sudostroenie Publ. [in Russian].
  7. Microelectromechanical systems. (n.d.). Retrieved from https://uk.wikipedia.org/wiki/Мікроелектромеханічні_системи (Last accessed: 01.10.2021) [in Ukrainian].
  8. Topolov,V.Y. & Panich,A.E. (2009). Piezocomposites: preparation, properties, application. RostovnaDonu [in Russian].

  

 
Copyright 2014 16.126-134 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free