№ 2 (18) – 2022

SIMULATION OF THE USE OF PASSIVE MEANS OF IMITATION TO CREATE A DISTORTIVE RADIO-LOCATION INFORMATION ENVIRONMENT

https://doi.org/10.37129/2313-7509.2022.18.44-54
 
завантаження V. Kotsyruba, Doctor of Technical Sciences, Professor

 

завантаження A. Bogun
 
 

Cite in the List of bibliographic references (DSTU 8302:2015)

Коцюруба В. І., Богун А. М. Моделювання використання пасивних засобів імітації для спотворення радіолокаційної інформативної обстановки. Збірник наукових праць Військової академії (м. Одеса). 2022. № 2 (18). С. 44–54. https://doi.org/10.37129/2313-7509.2022.18.44-54
 

Abstract

A 3-D model of corner reflectors of various types and sizes was built on the basis of the analysis of the results of mathematical modeling using the CST Studio automatic decision-making system. As a result of the simulation, the numerical values of the parameters of the effective scattering area were determined, which made it possible to clarify the dependence of the relative change of the effective scattering area of corner reflectors on the shape of the rib, to confirm the hypothesis regarding the quadratic dependence of the effective scattering area on the radiation frequencies.
A comparison was made with the results of calculations based on known analytical formulas, which were determined empirically to calculate the maximum effective scattering area for corner reflectors of typical configurations. For a more in-depth analysis of the simulation results, a conventional cross-section of the scattering diagram and its expansion relative to different angles of rotation were performed. A comparative analysis of the modeling results allowed us to conclude that for different observation angles, the effective scattering area of a small-angle reflector corresponds on average to the effective scattering area of a Mi-8T helicopter. It was also established that the most appropriate for simulating fighter jets are large corner reflectors with a rib size of 120 cm. At the same time, the weight of the corner reflector needs to be significantly reduced, which becomes possible when using light materials, such as foam plastic, which is pasted over with foil of the appropriate thickness. Electrodynamics’ modeling was confirmed by an experiment in an anechoic chamber. Experiments on changing the parameters of the effective scattering area of corner reflectors depending on a number of controlled factors have been chosen as the direction of further research.
 

Keywords

modeling, passive means of imitation, radio engineering means, distortion, radar information environment.
 

List of bibliographic references

  1. Методичні рекомендації військам (силам) Збройних Сил України щодо підвищення ефективності заходів маскування військ та об’єктів. Київ : ЦНДІ ЗСУ, 2022. 142 с.
  2. Ярош С. П. Теоретичні основи побудови та застосування розвідувально-управляючих інформаційних систем протиповітряної оборони / ред. І. О. Кириченка. Харків : ХУПС, 2011. 512 с.
  3. Вагапов В. Б., Бурляй І. Ю., Рюмшин М. О. Радиоавтоматика. Київ: Техніка, 2002. 288 с.
  4. Справочник по учебному проектированию приемно-усилительных устройств / М. К. Белкин та ін. 2-ге вид. Київ : Вища шк., 1988. 472 с.
  5. Malachias N. Design and experimental evaluation of a novel type radar reflector for use in the marine environment. Conference proceedings of ICMET OMAN. 2019. P. 212–215.
  6. Метод расчета характеристик излучения двухзеркальных антенн с зеркалами резонансных размеров конечной толщины и проводимости / О. И. Сухаревский та ін. Вісті вищих учбових закладів. Радіоелектроніка. 2020. № 63 (7). С. 410–420.
  7. Balanis C. A. Antenna theory: analysis and design. Antenna Theory: Analysis and Design. New Jersey : Wiley, 2016. URL: https://www.wiley.com/en-us/Antenna+Theory:+Analysis+and+Design,+4th+Edition-p-9781118642061.
  8. Granet C. Designing axially symmetric Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters. IEEE Antennas and Propagation Magazine. 1998. Vol. 40, no. 2. P. 76–82. URL: https://doi.org/10.1109/74.683545.
  9. Design of wideband omnidirectional dual-reflector antennas in millimeter waves. IEEE antennas wirel / R. A. Penchel et al. Propag. lett. 2019. Vol. 18, no. 5. P. 906–910. URL: https://doi.org/10.1109/LAWP.2019.2905602.
  10. Design of offset dual-reflector antennas for improving isolation level between transmitter and receiver antennas / K. B. Kong et al. Prog. Electromagn. Res. C. 2015. Vol. 57. P. 193–210. URL: https://doi.org/10.2528/PIERC15041301.
  11. GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections / R. A. Penchel et al. International Journal of Antennas and Propagation. 2018. Vol. 2018. P. 1–9. URL: https://doi.org/10.1155/2018/1409716.
  12. Pereira R. A. M., Carvalho N. B., da Cunha J. P. Quasi-optical analysis of a double reflector microwave antenna system. Wireless Power Transfer. 2018. Vol. 5, no. 2. P. 75–86. URL: https://doi.org/10.1017/wpt.2017.19.
  13. Ray tracing technique for shaping a dual reflector antenna system / M. R. Ahsan et al. Turkish Journal Of Electrical Engineering & Computer Sciences. 2016. Vol. 24. P. 1223–1234. URL:https://doi.org/10.3906/elk-1311-214.
  14. Haddadi A., Ghorbani A. Distorted Reflector Antennas: Analysis of Radiation Pattern and Polarization Performance. IEEE Transactions on Antennas and Propagation. 2016. Vol. 64, no. 10. P. 4159–4167. URL: https://doi.org/10.1109/tap.2016.2580157.
  15. Ivanchenko D. D., Sukharevsky I. O. Backscattering Measurements For Metallic Unclosed Spherical Screens. Telecommunications and Radio Engineering. 2010. Vol. 69, no. 5. P. 423–428. URL: https://doi.org/10.1615/telecomradeng.v69.i5.50.
  16. Sukharevsky O. I., Zalevsky G. S., Vasilets V. A. Modeling of Ultrawideband (UWB) Impulse Scattering by Aerial and Subsurface Resonant Objects Based on Integral Equation Solving. Advanced Ultrawideband Radar. 2016. P. 213–254.
  17. Сухаревський О. І., Василець В. О., Ряполов І. Є., Ряполов Є. І. Оцінка використання кутових відбивачів для імітації літаків тактичної авіації. Наука і техніка Повітряних Сил Збройних Сил України. 2018. № 2(31).С. 73–78.
 
 
 

References

 
  1. Methodological recommendations to the military (forces) of the Defense Forces of Ukraine on how to improve the efficiency of entering the military and objects. (2022). TsNDI ZSU Publ. [in Ukrainian].
  2. Yarosh, S. P., & Kyrychenko, I. O. (Ed). (2011). Theoretical foundations for the development of the development of control and information systems of anti-surveillance defense. KhUPS Publ. [in Ukrainian].
  3. Vahapov, V. B., Burlyay, I. Yu., & Ryumshyn, M. O. (2002). Radioautomatics. Tekhnika Publ. [in Ukrainian].
  4. Belkyn, M. K., Belynskyy, V. T., Mazor, Yu. L., & Tereshchuk, R. M. (1988). Receiver Amplifier Design Tutorial Handbook. Vyshcha shkola Publ. [in Russian].
  5. Malachias, N. (2019). Design and experimental evaluation of a novel type radar reflector for use in the marine environment. Conference proceedings of ICMET OMAN, 212-215.
  6. Sukharevskyy, O. Y., Nechytaylo, S. V., Vasylets, V. A., & Kozhushko, Ya. N. (2020). Method for calculating the radiation characteristics of two-mirror antennas with mirrors of resonant dimensions of finite thickness and conductivity. Visti vyshchykh uchbovykh zakladiv. Radioelektronika, 63(7). р. 410-420.
  7. Asymptotic solver overview. (n.d.). URL: https://space.mit.edu/RADIO/CST_online/mergedProjects/3D/.
  8. Balanis, C. A. (2016). Antenna theory: analysis and design. URL: https://www.wiley.com/en-us/Antenna+Theory:+Analysis+and+Design,+4th+Edition-p-9781118642061.
  9. Granet, C. (1998). Designing axially symmetric Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters. IEEE Antennas and Propagation Magazine, 40(2), 76-82. https://doi.org/10.1109/74.683545.
  10. Penchel, R. A., Zang, S. R., Bergmann, J. R., & Moreira, F. J. S. (2019). Design of Wideband Omnidirectional Dual-Reflector Antennas in Millimeter Waves. IEEE Antennas and Wireless Propagation Letters, 18(5), 906-910. https://doi.org/10.1109/lawp.2019.2905602.
  11. Kong, K.-B., Kim, H.-S., Aziz, R. S., & Park, S.-O. (2015). Design Of Offset Dual-Reflector Antennas For Improving Isolation Level Between Transmitter And Receiver Antennas. Progress In Electromagnetics Research C, 57, 193-203. https://doi.org/10.2528/pierc15041301.
  12. Penchel, R. A., Zang, S. R., Bergmann, J. R., & Moreira, F. J. S. (2018). GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections. International Journal of Antennas and Propagation, 2018, 1-9. https://doi.org/10.1155/2018/1409716.
  13. Pereira, R. A. M., Carvalho, N. B., & da Cunha, J. P. (2018). Quasi-optical analysis of a double reflector microwave antenna system. Wireless Power Transfer, 5(2), 75-86. https://doi.org/10.1017/wpt.2017.19.
  14. Ahsan, M. R., Islam, M. T., Yamada, Y., & Misran, N. (2016). Ray tracing technique for shaping a dual reflector antenna system. Turkish Journal Of Electrical Engineering & Computer Sciences, 24, 1223-1234. https://doi.org/10.3906/elk-1311-214.
  15. Haddadi, A., & Ghorbani, A. (2016). Distorted Reflector Antennas: Analysis of Radiation Pattern and Polarization Performance. IEEE Transactions on Antennas and Propagation, 64(10), 4159-4167. https://doi.org/10.1109/tap.2016.2580157.
  16. Ivanchenko, D. D., & Sukharevsky, I. O. (2010). Backscattering Measurements For Metallic Unclosed Spherical Screens. Telecommunications and Radio Engineering, 69(5), 423-428. https://doi.org/10.1615/telecomradeng.v69.i5.50.
  17. Sukharevsky, O. I., Zalevsky, G. S., & Vasilets, V. A. (2016). Modeling of Ultrawideband (UWB) Impulse Scattering by Aerial and Subsurface Resonant Objects Based on Integral Equation Solving. In Advanced Ultrawideband Radar (p. 213-254). CRC Press.
  18. Sukharevskyi, O. I., Vasylets, V. O., Ryapolov, I. E., & Ryapolov, E. I. (2018). Evaluation of the use of corner reflectors for the simulation of tactical aviation aircraft. Science and technology of the Air Force of the Armed Forces of Ukraine, 2(31), 73-78. [in Urainian].
Copyright 2014 18.44-54 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free