№ 2 (18) – 2022

TECHNOLOGY OF CREATION OF ELEMENTS OF UNMANNED AERIAL VEHICLES USING ADDITIVE TECHNOLOGIES

https://doi.org/10.37129/2313-7509.2022.18.90-96
 
завантаження
V. Bachynskyi, PhD in Technical Sciences, Senior Researcher Scientist

 

завантаження
O. Shkurpit
завантаження
S. Chvanov
 
 

Cite in the List of bibliographic references (DSTU 8302:2015)

Бачинський В. В., Шкурпіт О. М., Чванов С. Ю. Технологія створення елементів безпілотних літальних апаратів за адитивними технологіями. Збірник наукових праць Військової академії (м. Одеса). 2022. № 2 (18). С. 90–96. https://doi.org/10.37129/2313-7509.2022.18.90-96
 

Аbstract

The article describes the technology of building elements of unmanned aerial vehicles (UAV) based on the use of additive technologies (AT). AT opened a fundamentally new direction in the concept of UAV manufacturing, which makes it possible to obtain a final product of a given shape and size based on a digital prototype. The modern equipment used in JSC is constantly being improved and allows for high printing speeds to increase the quality of the product at relatively low costs. The use of AT makes it possible to significantly reduce the weight of UAV elements due to the reduction of material costs. The article examines the technological process of 3D printing of UAV elements and the technological scheme of materials selection for the manufacture of UAV elements.
In the course of the conducted research, a number of problems related to the need to improve the process of 3D printing of complex elements of UAVs, in order to effectively use the latest additive 3D printing technologies in modern production in combat conditions, were identified. The results of test printing, plastic tests and calculations made it possible to develop a general methodology for the production of UAV elements using additive technologies.
The introduction of additive technologies for the production of UAV elements in the field will contribute to solving a wide range of combat tasks. It has been established that the use of additive technologies will entail the adjustment of UAV design principles, the development of printing technologies, the use of new construction strategies, the emergence of new technologies related to 3D printing. The analysis of quality control mechanisms for the development of UAV elements shows that the technological scheme for the selection of composite material is an important element in the 3D printing of modern UAVs and their components.
It was determined that with the improvement of technological equipment and the development of methods of material selection for the manufacture of UAV elements, the direction of creating new UAVs with the help of AT will steadily expand.

Кeywords

additive technologies, UAV, 3D printing, technology, structure.
 

List of bibliographic references

  1. UAV fully fabricated by additive layer manufacturing. Green Car Congress. URL: https://www.greencarcongress.com/2012/08/sulsa-20120827.html (дата звернення: 20.07.2022).
  2. Чабаненко А. В. Обеспечение качества аддитивного производства посредством системы контроля послойного синтеза / А.В. Чабаненко, Е. Г. Семенова, В. О. Смирнова, А. О. Смирнов, Н.Н.Рожков. Вопросы радиоэлектроники. 2018. №10. С. 75-79. https://doi.org/10.21778/2218-5453-2018-10-17-24.
  3. Кондрашов С. В., Пыхтин А. А., Ларионов С. А., Сорокин А. Е. Влияние технологических режимов FDM-печати и состава используемых материалов на физико-механические характеристики FDM-моделей (обзор). Труды ВИАМ. 2019 №10 (82). С. 34–49. https://doi.org/10.18577/2307-6046-2019-0-10-34-39.
  4. Relativity space. Relativity Space. URL: https://www.relativityspace.com/stargate/ (дата звернення: 20.08.2022).
  5. Thingiverse - digital designs for physical objects. Thingiverse - Digital Designs for Physical Objects. URL: https://www.thingiverse.com/ (дата звернення: 07.08.2022).
  6. Zhang X., Fan W., Liu T. Fused deposition modeling 3D printing of polyamide-based composites and its application.Composites Communications.2020. Vol.21.P.100413. https://doi.org/10.1016/j.coco.2020.100413.
  7. Bertolino M., Battegazzore D., Arrigo R. Designing 3D printable polypropylene: Material and process optimization through reology. Additive Manufacturing. 2021. Vol. 40. P. 101944. https://doi.org/10.1016/j.addma.2021.101944.
  8. Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science. 2020. Vol. 137. No. 12. P. 48545. https://doi.org/10.1002/app.48545.
  9. Бачинський В. В., Кондратенко О. І., Кондратенко В. С., Шкурпіт О. М. Адитивні технології у виробництві безпілотних літальних апаратів. Збірник наукових праць Військової академії (м. Одеси). Одеса, 2021. Вип.1(15). C. 6–14. https://doi.org/10.37129/2313-7509.2021.15.6-14.
  10. Rosli A.A., Shuib R.K., Ishak K.M. et al. Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM) . AIP Conference Proceedings. 2020. Vol. 2267. No. 1. P. 020072.https://doi.org/10.1063/5.0015799.
 
 
 

References

 
  1. Green Car Congress Magazine: Energy, technologies, issues and policies for sustainable mobility. (n.d.). Retrieved fromhttp://www.greencarcongress.com/2012/08/sulsa-20120827.html (last accessed: 20.07.2022) [in English].
  2. Chabanenko, A. V., Semenova, E. G., Smirnova, V. O., Smirnov, A. O., & Rozhkov, N. N. (2019). Assuring the quality of additive manufacturing through a layered synthesis control system. Questions of radio electronics, 10, 75-79. https://doi.org/10.21778/2218-5453-2018-10-17-24 [in Russian].
  3. Kondrashov, S. V., Pyihtin, A. A., Larionov, S. A., & Sorokin, A. E. (2019). Influence of FDM printing technological modes and the composition of used materials on the physical and mechanical characteristics of FDM models (review). Proceedings of VIAM., no.10 (82). Retrieved from http://www.viam-works.ru.https://doi.org/10.18577/2307-6046-2019-0-10-34-39 (last accessed: 01.09.2022) [in Russian].
  4. Relativity Space, Inc.: the world’s first autonomous rocket factory and launch services leader for satellite constellations. (n.d.). Retrieved fromhttps://www.relativityspace.com/stargate/ (last accessed: 20.08.2022) [in English].
  5. 3D printing community: MakerBot's Thingiverse. (n.d.). Retrieved from https://www.thingiverse.com/ (last accessed: 07.08.2022) [in English].
  6. Zhang, X., Fan, W., & Liu, T. (2020).Fused deposition modeling 3D printing of polyamide-based composites and its application. Composites Communications.Vol.21.P. 100413https://doi.org/10.1016/j.coco.2020.100413 [in English].
  7. Bertolino, M., Battegazzore, D., & Arrigo, R. (2021). Designing 3D printable polypropylene: Material and process optimization through reology. Additive Manufacturing. Vol. 40. P. 101944.https://doi.org/10.1016/j.addma.2021.101944 [in English].
  8. Spoerk, M., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science. Vol. 137. No. 12. P. 48545.https://doi.org/10.1002/app.48545 [in English].
  9. Bachinskyi,V. V., Kondratenko, O. I., Kondratenko, V. S., & Shkurpit, O. M., (2021).Additive technologists at the production of unmanned aerial vehicles. Collection of scientific works of the Military Academy.1(15), 6-14.https://doi.org/10.37129/2313-7509.2021.15.6-14 [in Ukrainian].
  10. Rosli, A. A., Shuib, R. K., & Ishak, K. M. (2020).Influence of bed temperature on warpage, shrinkage and density of various acrylonitrile butadiene styrene (ABS) parts from fused deposition modelling (FDM) . AIP Conference Proceedings. Vol. 2267. No. 1. P. 020072https://doi.org/10.1063/5.0015799 [in English].
Copyright 2014 18.90-96 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free