№ 2 (16) – 2021 

 

QUANTIZATION OF THE GRAVITATIONAL FIELD. THEORETICAL AND EXPERIMENTAL SUBSTANTIATION OF THE GRAVITATIONAL-ELECTROMAGNETIC RESONANCE. THE PHYSICAL NATURE OF THE QUANTUM OF THE GRAVITATIONAL FIELD.WHY THE SPEED OF LIGHT IN VACUUM IS CONSTANT

https://doi.org/10.37129/2313-7509.2021.16.151-180
 
 завантаження V. Timkov, Cand. of Technical Sciences, Associate Professor
                                                        
 завантаження S. Timkov
 
 завантаження V. Zhukov
 завантаження K. Afanasiev
 

FULL TEXT: PDF (in English)

 

Cite in the List of bibliographic references (DSTU 8302:2015)

Timkov V. F., Timkov S. V., Zhukov V. A., Afanasiev K. E. Quantization of the gravitational field. Theoretical and experimental substantiation of the gravitational-electromagnetic resonance. The physical nature of the quantum of the gravitational field. Why the speed of light in vacuum is constant. Збірник наукових праць Військової академії (м. Одеса). 2021. Вип. 2(16). С. 151-180. https://doi.org/10.37129/2313-7509.2021.16.151-180 

 

Abstract

It is shown that gravitating objects that are at rest, or move without acceleration, create a standing gravitational wave in space. The length of this wave is a quantization step of the gravitational field. It is proportional to the mass of the gravitating object. The coefficient of proportionality is a value that is inverse to the linear density of the Planck mass, that is, proportional to the linear rarefaction of the Planck mass.A physically standing gravitational wave is a curvature, deformation of space under the influence of the gravitational field of a gravitating object. If we imagine a gravitating object as a material point, then the geometric picture of a standing gravitational wave can be represented as a set of hierarchical spherical equipotential surfaces embedded in each other, the radius of which changes away from the center of gravity by the value of the quantization step. It is shown that a standing gravitational wave has a quantum character. The quantum of the gravitational field is the square of the speed of light in a vacuum. The quantum of the gravitational field is equal to the gravitational potential of the gravitating object at a distance from it equal to the quantization step. Theoretical and experimental substantiation of the presence of gravitational-electromagnetic resonance (GER) in nature is given. This resonance arises when the wave vectors of a standing gravitational wave and an electromagnetic wave traveling in space are equal. GER is the basis for modulating the emission spectrum of stars and their clusters. The wavelength of the envelope of the spectrum is proportional to the mass of the radiating object. By measuring the wavelength of the envelope, one can accurately estimate the mass of the radiating object. The physical nature of the quantum gravitational field is the kinematic gravitational viscosity of the gravitational field of the baryonic matter of the observable Universe. 

Keywords

 
Maxwell-like equations of the gravitational field, the standing gravitational wave, the quantum of the gravitational field, the gravitational electromagnetic resonance, Planck constants, kinematic viscosity of the gravitational field.
 

List of bibliographic references

  1. Heaviside O. A gravitational and electromagnetic analogy. The Electrician. URL: http://sergf.ru/Heavisid.htm.
  2. Пуанкаре Ж. Г. Избранные труды : в 3 т. / под ред. Н. Н. Боголюбова, В. И. Арнольда, И.БПогребысского. Москва: Изд-во «Наука», Серия «Классика науки», 1974. Т. 3. С. 433–486.
  3. Эйнштейн А. О гравитационных волнах. Работы по теории относительности 1905–1920 гг. Сборник научных трудов в 4-х томах / под ред. И. Е. Тамм, Ю. А. Смородинский, Б. Г. Кузнецов. Москва : Наука, 1965. Т. 1. С. 631–646.
  4. LIGO Scientific Collaboration. URL: https://www.ligo.org/.
  5. LIGO Detected Gravitational Waves from Black Holes. Ligo Caltech. URL: https://www.ligo.caltech.edu/detection.
  6. Timkov V. F., Timkov S. V., Zhukov V. A. Planck universal proportions. Gravitational – electromagnetic resonance. Вимірювальна та обчислювальна техніка в технологічних процесах. 2015. № 3. С. 7–11. URL: http://nbuv.gov.ua/UJRN/vott_2015_3_3.
  7. Timkov V. F., Timkov S. V., Zhukov V. A. Gravitational-electromagnetic resonance of the sun as one of the possible sources of auroral radio emission of planets in kilometric range. Вимірювальна та обчислювальна техніка в технологічних процесах. 2015. № 4. С. 23–32. URL: http://nbuv.gov.ua/UJRN/vott_2015_4_4.
  8. Timkov V. F.,Timkov S. V., Zhukov V. A. The gravitational-electromagnetic resonanse of the sun in the low-frequency of radio spectrum of the Jupiter. Вимірювальна та обчислювальна техніка в технологічних процесах. 2016. № 2. С. 198–203. URL: http://nbuv.gov.ua/UJRN/vott_2016_2_36.
  9. Gravitational Wave Open Science Center. Ligo Virgo. URL: https://www.gw-openscience.org/catalog/GWTC-1-confident/single/GW150914/.
  10. Timkov V. F., Timkov S. V., Zhukov V. A. Electric charge as a function of the moment of mass. Gravitational form of coulomb’s law. Вимірювальна та обчислювальна техніка в технологічних процесах. 2016. № 3. С. 27–32. URL: http://nbuv.gov.ua/UJRN/vott_2016_3_4.
  11. Ландау Л. Д., Лифшиц Е. М. Теория поля. Москва : Изд-во «Наука», 1973. С. 91-119.
  12. Agop M., Buzea C. Gh., Ciobanu B. On Gravitational Shielding in Electromagnetic Fields. URL: https://arxiv.org/html/physics/9911011.
  13. Simon J. Clark, Robin W. Tucker Gauge Symmetry and Gravito-Electromagnetism. Cornell University. URL: https://arxiv.org/abs/gr-qc/0003115.
  14. Mashhoon B., Gronwald F., Lichtenegger H.I.M. Gravitomagnetism and the Clock Effect. Cornell University. URL: https://arxiv.org/abs/gr-qc/9912027.
  15. Mashhoon B. Gravitoelectromagnetism: A Brief Review. Cornell University. URL: https://arxiv.org/abs/gr-qc/0311030.
  16. Fedosin S. G. The General Theory of Relativity Metric Theory of Relativity and Covariant Theory of Gravitation. Axiomatization and Critical Analysis. International Journal of Theoretical and Applied Physics (IJTAP). 2014. Vol. 31, No. 1. P. 9–26.
  17. Behera H., Barik N. Attractive Heaviside-Maxwellian (Vector) Gravity from Special Relativity and Quantum Field Theory. Cornell University. URL: https://arxiv.org/abs/1709.06876.
  18. Миронов В. С. Курс гравиразведки. Ленинград : Недра, 1980. 543 с.
  19. Michael B. Mensky On gravitational-electromagnetic resonance. Cornell University. URL: https://arxiv.org/abs/0712.3721.
  20. Никольский В. В., Никольская Т. И. Электродинамика и распространение радиоволн. Москва : «Наука», 1989. С. 223–318.
  21. Семенов Н. А. Техническая электродинамика. Москва : Связь, 1973. С. 153–324.
  22. Вольман В. И., Пименов Ю. В. Техническая электродинамика / под ред. Г. З. Айзенберга. Москва : «Наука», 1971. С. 239–393.
  23. Taubenschuss U., Rucker H. O., Kurth W. S., Cecconi B., Zarka P., Dougherty M. K., Steinberg J. T. Linear prediction studies for the solar wind and Saturn kilometric radiation. Annales Geophysicare. 2006. Vol. 24, Issue 11. P. 3139-3150. URL: www.ann-geophys.net/24/3139/2006/.
  24. Parrot M., Lefeuvre F., Rauch J.-L., Santolik O., Mogilevski M. M. Propagation characteristics of auroral kilometric radiation observed by the MEMO experiment on Interball 2. Journal of Geophysical Research. 2001. Vol. 106, No A1. P. 315–325.
  25. Изображение. Институт Космических Исследований. URL: http://www.iki.rssi.ru/images/auroral/polrad_1.gif.
  26. Fundamental Physical Constants. National Institute of Standards and Technology. URL: https://physics.nist.gov/cuu/Constants/index.html.
  27. Timkov V. F., Timkov S. V., Zhukov V. A., Afanaciev K. E. The method for increasing the accuracy of some fundamental physical constants. Технічне регулювання, метрологія, інформаційні та транспортні технології : матеріали ІХ Міжнародної науково-практичної конференції (м. Одеса, 14-15 листопада 2019 р.). Одеса: друкарня «Апрель», 2019. С. 132–145.
  28. Timkov V. F., Timkov S. V. Rotating spase of the universe, as a source of dark energy and dark matter. Вимірювальна та обчислювальна техніка в технологічних процесах. 2015. № 3. С. 200–204. URL: http://nbuv.gov.ua/UJRN/vott_2015_3_40.
 

References

  1. Heaviside, O. (1893). A gravitational and electromagnetic analogy. The Electrician. Retrieved from http://sergf.ru/Heavisid.htm. [in English].
  2. Puankare, ZH. G. (1974). Selected works. (N. N. Bogolyubova, V. I. Arnol'da, I. B Pogrebysskogo Eds., Vol. 3). Moskva: Izd-vo «Nauka», Seriya «Klassika nauki» [in Russian].
  3. Ejnshtejn, A. (1965). On gravitational waves. Works on the theory of relativity 1905–1920. (I. E. Tamm, YU. A. Smorodinskij, B. G. Kuznecov Eds., Vol. 1). Moskva: Nauka [in Russian].
  4. LIGO Scientific Collaboration. (n.d.). Retrieved from https://www.ligo.org/. [in English].
  5. LIGO Detected Gravitational Waves from Black Holes. (n.d.). Ligo Caltech. Retrieved from https://www.ligo.caltech.edu/detection. [in English].
  6. Timkov, V. F., Timkov, S. V., & Zhukov, V. A. (2015). Planck universal proportions. Gravitational – electromagnetic resonance. Measuring and computing devices in technological processes, 3, 7-11. Retrieved from http://nbuv.gov.ua/UJRN/vott_2015_3_3. [in English].
  7. Timkov, V. F., Timkov, S. V., & Zhukov, V. A. (2015). Gravitational-electromagnetic resonance of the sun as one of the possible sources of auroral radio emission of planets in kilometric range. Measuring and computing devices in technological processes, 4, 23-32. Retrieved from http://nbuv.gov.ua/UJRN/vott_2015_4_4. [in English].
  8. Timkov, V. F., Timkov, S. V., & Zhukov, V. A. (2016). The gravitational-electromagnetic resonanse of the sun in the low-frequency of radio spectrum of the Jupiter. Measuring and computing devices in technological processes, 2, 198-203. Retrieved from http://nbuv.gov.ua/UJRN/vott_2016_2_36. [in English].
  9. Gravitational Wave Open Science Center. (n.d.). Retrieved from https://www.gw-openscience.org/catalog/GWTC-1-confident/single/GW150914/. [in English].
  10. Timkov, V. F., Timkov, S. V., & Zhukov, V. A. (2016). Electric charge as a function of the moment of mass. Gravitational form of coulomb’s law. Measuring and computing devices in technological processes, 3, 27-32. Retrieved from http://nbuv.gov.ua/UJRN/vott_2016_3_4. [in English].
  11. Landau, L. D., & Lifshic, E. M. (1973). The theory of fields. Moskva : Izd-vo «Nauka» [in Russian].
  12. Agop, M., Buzea, C. Gh., & Ciobanu, B. (1999). On Gravitational Shielding in Electromagnetic Fields. Retrieved from https://arxiv.org/html/physics/9911011. [in English].
  13. Clark, S. J., & Tucker, R. W. (n.d.). Gauge Symmetry and Gravito-Electromagnetism. Retrieved from https://arxiv.org/abs/gr-qc/0003115. [in English].
  14. Mashhoon, B., Gronwald, F., & Lichtenegger, H.I.M. (2001). Gravitomagnetism and the Clock Effect. Retrieved from https://arxiv.org/abs/gr-qc/9912027. [in English].
  15. Mashhoon, B. (2008). Gravitoelectromagnetism: A Brief Review. Retrieved from https://arxiv.org/abs/gr-qc/0311030. [in English].
  16. Fedosin, S. G. (2014). The General Theory of Relativity Metric Theory of Relativity and Covariant Theory of Gravitation. Axiomatization and Critical Analysis. International Journal of Theoretical and Applied Physics (IJTAP), 31, No. 1, 9–26. [in English].
  17. Behera, H., & Barik, N. (2017). Attractive Heaviside-Maxwellian (Vector) Gravity from Special Relativity and Quantum Field Theory. Retrieved from https://arxiv.org/abs/1709.06876. [in English].
  18. Mironov, V.S. (1980). Gravity survey course. Leningrad: Nedra [in Russian].
  19. Mensky, M. B. (2007). On gravitational-electromagnetic resonance. Retrieved from https://arxiv.org/abs/0712.3721. [in English].
  20. Nikol'skij, V. V., Nikol'skaya, T. I. (1989). Electrodynamics and propagation radio wave. Moskva : «Nauka» [in Russian].
  21. Semenov, N. A. (1973). Technical electrodynamics. Moskva : Svyaz' [in Russian].
  22. Vol'man, V. I., & Pimenov, YU. V. (1971). Technical electrodynamics. (G. Z. Ajzenberga, Ed.).Moskva : «Nauka» [in Russian].
  23. Taubenschuss, U., Rucker, H. O., Kurth, W. S., Cecconi, B., Zarka, P., Dougherty, M. K., Steinberg, J. T. (2006). Linear prediction studies for the solar wind and Saturn kilometric radiation. Annales Geophysicare, 24, issue 11, 3139-3150. Retrieved from www.ann-geophys.net/24/3139/2006/ [in English].
  24. Parrot, M., Lefeuvre, F., Rauch, J.-L., Santolik, O., & Mogilevski, M. M. (2001). Propagation characteristics of auroral kilometric radiation observed by the MEMO experiment on Interball 2. Journal of Geophysical Research, 106, No A1. P. 315–325. [in English].
  25. Picture (n.d). Retrieved from http://www.iki.rssi.ru/images/auroral/polrad_1.gif. [in English].
  26. Fundamental Physical Constants. (n.d.). Retrieved from https://physics.nist.gov/cuu/Constants/index.html. [in English].
  27. Timkov, V. F., Timkov, S. V., Zhukov, V. A., & Afanaciev, K. E. (2019). The method for increasing the accuracy of some fundamental physical constants. Collection of scientific articles of the 9th International Scientific and Practical Conference «Technical Regulation, Metrology, Information and Transport Technologies», November 14-15, 2019. (pp. 132-145). Odesa [in English].
  28. Timkov, V. F., & Timkov, S. V. (2015). Rotating spase of the universe, as a source of dark energy and dark matter. Measuring and computing devices in technological processes, 3, 200–204. 

  

 
Copyright 2014 16.151-180 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free