№ 1 (19) – 2023


завантаження N. Ismailova, Doctor of Technical Sciences, Professor


завантаження T. Mohylanets, Candidate of Technical Sciences 
завантаження N. Oliinyk, Candidate of Technical Sciences, Associate Professor

Cite in the List of bibliographic references (DSTU 8302:2015)

Ісмаілова Н. П., Могилянець Т. М., Олійник Н. В. Графоаналітичне профілювання спряжених криволінійних поверхонь ріжучого інструменту. Збірник наукових праць Військової академії (м. Одеса). 2023. № 1 (19). С. 23-28. https://doi.org/10.37129/2313-7509.2023.19.23-28


In the research, graphic-analytical methods for profiling the cutting tool for processing the helical surface of the drill groove were developed. The basis of these studies was the definition of the characteristics of conjugated surfaces, as the locus of the bases of the normal, which are directed from the points of the surface of revolution to a given helical surface. The methods were based on the position of the differential geometry about the common normal at the points of tangent conjugacy of the surface.
Graphic-analytical profiling is a fairly wide and developed branch of science, based on the one hand on the theoretical and practical achievements of applied geometry, which makes it possible to use it, and on the other hand, it is a powerful analytical tool. Formation is an approximate representation of any set of objects, phenomena of the external world through geometric diversity and relationships between them. Conjugation of curvilinear surfaces of the cutting tool for processing parts in weapons and military equipment is one of the most important topics. The article proposes to optimize the process by creating universal tools, which may include the creation of a kinematic method that will be used to design products with specified parameters. The use of graphic-analytical formation of curved surfaces as a design tool in the "manual" mode, in which all graphic formations of conjugate curved surfaces, their interconnection and interdependence will be laid. Of great importance in the design of mating curvilinear surfaces of a cutting tool is the exact reproduction of their shape as the basis for reliable and long-term operation of future real products in weapons and military equipment. This article aims to take a certain step in this direction regarding the creation of mating curved surfaces for the design of cutting tools, processing of products in weapons and military equipment.


Graph-analytical formation, kinematic method, surface conjugation, kinematic pairs, parameters, shaping, curved surfaces, drill groove.

List of bibliographic references

  1. Подкоритов А. М. Наукові основи спряжених квазігвинтових поверхонь, що виключають інтерференцію. Міжвідомчий науково-практичний збірник. «Прикладна геометрія та інженерна графіка». Київ, 2010. Вип. 84. С. 8–17.
  2. Исмаилова Н. П. Параметрическое определение характеристики сопряженных квазивинтовых поверхностей исключающих интерференцию. Наукові нотатки. 2015. Вип. 48. С. 90–92.
  3. Подкоритов А. М., Ісмаілова Н. П. Теоретичні основи спряжених квазігвинтових поверхонь, що виключають інтерференцію : монографія. Херсон : ФОП Грінь Д. С., 2016. 330 с.
  4. Подкоритов А. М., Ісмаілова Н. П. Загальний ітераційній метод виключення інтерференції спряжених квазігвинтових поверхонь. Сучасні проблеми моделювання. 2016. Вип. 5. С. 98–103.


  1. Podkoritov, A. M. (2010). Scientific basis of conjugate quasi-helical surfaces that exclude interference. Mizhvidomchyinaukovo-tekhnichnyizbirnyk «Prykladnaheometriia ta inzhenernahrafika», 84, 8-17. [in Ukrainian].
  2. Ismailova, N. P. (2015). Parametric identification characteristics conjugated kvazihvyntovyh surfaces, which eliminates interference.Mizhvuzivskyizbirnyk «Naukovinotatky», 48, 91-93. [in Russian].
  3. Podkoritov, A. M., & Ismailova, N. P. (2016). Theoretical foundations of interference-excluded conjugate quasi-helical surfaces. Kherson: FOP Gryn D. S Publ. [in Ukrainian].
  4. Podkoritov, A. M., & Ismailova, N. P. (2016). General iterative method for eliminating interference of conjugate quasi-helical surfaces. Modern modeling problems, 5, 98-103. [in Ukrainian].


Copyright 2014 19.23-28 (eng) А. Розроблено ІОЦ ВА
Templates Joomla 1.7 by Wordpress themes free